Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
RSC advances ; 11(6):3272-3279, 2021.
Article in English | EuropePMC | ID: covidwho-1787010

ABSTRACT

At the stage of SARS-CoV-2 infection in human cells, the spike protein consisting of three chains, A, B, and C, with a total of 3300 residues plays a key role, and thus its structural properties and the binding nature of receptor proteins to host human cells or neutralizing antibodies has attracted considerable interest. Here, we report on interaction analyses of the spike protein in both closed (PDB-ID: 6VXX) and open (6VYB) structures, based on large-scale fragment molecular orbital (FMO) calculations at the level of up to the fourth-order Møller–Plesset perturbation with singles, doubles, and quadruples (MP4(SDQ)). Inter-chain interaction energies were evaluated for both structures, and a mutual comparison indicated considerable losses of stabilization energies in the open structure, especially in the receptor binding domain (RBD) of chain-B. The role of charged residues in inter-chain interactions was illuminated as well. By two separate calculations for the RBD complexes with angiotensin-converting enzyme 2 (ACE2) (6M0J) and B38 Fab antibody (7BZ5), it was found that the binding with ACE2 or antibody partially compensated for this stabilization loss of RBD. Visualized IFIE results seen from chain-B of spike protein.

2.
J Phys Chem Lett ; 12(46): 11267-11272, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1514381

ABSTRACT

Visualization of the interfacial electrostatic complementarity (VIINEC) is a recently developed method for analyzing protein-protein interactions using electrostatic potential (ESP) calculated via the ab initio fragment molecular orbital method. In this Letter, the molecular interactions of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with human angiotensin-converting enzyme 2 (ACE2) and B38 neutralizing antibody were examined as an illustrative application of VIINEC. The results of VIINEC revealed that the E484 of RBD has a role in making a local electrostatic complementary with ACE2 at the protein-protein interface, while it causes a considerable repulsive electrostatic interaction. Furthermore, the calculated ESP map at the interface of the RBD/B38 complex was significantly different from that of the RBD/ACE2 complex, which is discussed herein in association with the mechanism of the specificity of the antibody binding to the target protein.


Subject(s)
Spike Glycoprotein, Coronavirus , Static Electricity
3.
J Phys Chem B ; 125(24): 6501-6512, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1267988

ABSTRACT

By the splendid advance in computation power realized with the Fugaku supercomputer, it has become possible to perform ab initio fragment molecular orbital (FMO) calculations for thousands of dynamic structures of protein-ligand complexes in a parallel way. We thus carried out electron-correlated FMO calculations for a complex of the 3C-like (3CL) main protease (Mpro) of the new coronavirus (SARS-CoV-2) and its inhibitor N3 incorporating the structural fluctuations sampled by classical molecular dynamics (MD) simulation in hydrated conditions. Along with a statistical evaluation of the interfragment interaction energies (IFIEs) between the N3 ligand and the surrounding amino-acid residues for 1000 dynamic structure samples, in this study we applied a novel approach based on principal component analysis (PCA) and singular value decomposition (SVD) to the analysis of IFIE data in order to extract the dynamically cooperative interactions between the ligand and the residues. We found that the relative importance of each residue is modified via the structural fluctuations and that the ligand is bound in the pharmacophore in a dynamic manner through collective interactions formed by multiple residues, thus providing new insight into structure-based drug discovery.


Subject(s)
SARS-CoV-2 , Viral Matrix Proteins/chemistry , Amino Acids , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation
4.
RSC Adv ; 11(6): 3272-3279, 2021 Jan 14.
Article in English | MEDLINE | ID: covidwho-1062783

ABSTRACT

At the stage of SARS-CoV-2 infection in human cells, the spike protein consisting of three chains, A, B, and C, with a total of 3300 residues plays a key role, and thus its structural properties and the binding nature of receptor proteins to host human cells or neutralizing antibodies has attracted considerable interest. Here, we report on interaction analyses of the spike protein in both closed (PDB-ID: 6VXX) and open (6VYB) structures, based on large-scale fragment molecular orbital (FMO) calculations at the level of up to the fourth-order Møller-Plesset perturbation with singles, doubles, and quadruples (MP4(SDQ)). Inter-chain interaction energies were evaluated for both structures, and a mutual comparison indicated considerable losses of stabilization energies in the open structure, especially in the receptor binding domain (RBD) of chain-B. The role of charged residues in inter-chain interactions was illuminated as well. By two separate calculations for the RBD complexes with angiotensin-converting enzyme 2 (ACE2) (6M0J) and B38 Fab antibody (7BZ5), it was found that the binding with ACE2 or antibody partially compensated for this stabilization loss of RBD.

5.
J Chem Inf Model ; 60(7): 3593-3602, 2020 07 27.
Article in English | MEDLINE | ID: covidwho-597987

ABSTRACT

The worldwide spread of COVID-19 (new coronavirus found in 2019) is an emergent issue to be tackled. In fact, a great amount of works in various fields have been made in a rather short period. Here, we report a fragment molecular orbital (FMO) based interaction analysis on a complex between the SARS-CoV-2 main protease (Mpro) and its peptide-like inhibitor N3 (PDB ID: 6LU7). The target inhibitor molecule was segmented into five fragments in order to capture site specific interactions with amino acid residues of the protease. The interaction energies were decomposed into several contributions, and then the characteristics of hydrogen bonding and dispersion stabilization were made clear. Furthermore, the hydration effect was incorporated by the Poisson-Boltzmann (PB) scheme. From the present FMO study, His41, His163, His164, and Glu166 were found to be the most important amino acid residues of Mpro in interacting with the inhibitor, mainly due to hydrogen bonding. A guideline for optimizations of the inhibitor molecule was suggested as well based on the FMO analysis.


Subject(s)
Betacoronavirus/enzymology , Cysteine Endopeptidases/metabolism , Molecular Docking Simulation , Protease Inhibitors/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Protein Binding , Protein Conformation , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL